VERIFIKÁCIA VYBRANÝCH MODELOV PREDIKCIE BANKROTU V AUTOMOBILOVOM PRIEMYSLE SLOVENSKEJ REPUBLIKY
Ing. Mgr. Jana Kronová, PhD.
Katedra priemyselného a digitálneho inžinierstva, SjF, TUKE
Park Komenského 9, 040 02 Košice
doc. Ing. Miriam Pekarčíková, PhD.
Katedra priemyselného a digitálneho inžinierstva, SjF, TUKE
Park Komenského 9, 040 02 Košice
prof. Ing. Peter Trebuňa, PhD.
Katedra priemyselného a digitálneho inžinierstva, SjF, TUKE
Park Komenského 9, 040 02 Košice

Abstrakt
Abstract The aim of the paper is to compare selected ex ante methods that serve to predict financial health or financial distress. The introductory part contains theoretical knowledge from this issue, a description of selected prediction models. In the next part, the goal of the contribution and the methodology of solving the contribution are presented. The following is an interpretation of the results of the application of selected prediction models when assessing the financial health of companies operating in the field of automobile production in the Slovak Republic. The data matrix consists of financial and accounting indicators of 351 enterprises. The result is a comparison of applied prediction models. Purpose of the article The purpose of this article is to compare selected ex ante methods that indicate the possibility of bankruptcy. These methods are applied to manufacturing companies operating in the field of automobile production in the territory of the Slovak Republic. Methodology/methods In the presented article, selected ex ante methods were used to predict bankruptcy and assess the financial health of companies. Among the prediction methods, the Altman model was chosen, which is considered the founder of financial forecasting and is the most widely used prediction model. Furthermore, the prediction models were selected to match the economic conditions of the country in which the selected models are applied. For that reason, the selection was narrowed down to the area of V4 countries. A model based on discriminant analysis, logit and probit was selected for comparison. Scientific aim The scientific goal of this article is to compare the results of individual methods and the possibilities of interpreting the results from the point of view of assessing the financial health of selected samples of enterprises in the field of automobile production in the Slovak Republic. Findings It follows from the results of individual prediction models that two prediction models (IN05 and Gulkov's model) evaluate enterprises as prosperous, two prediction models (Zmijevský and Pociech et al.) evaluate them as not prosperous, and Altmanov on average characterized enterprises as located in the gray zone, i.e. they are neither among prosperous enterprises nor among non-prosperous enterprises. The results point to the ambiguity of financial health prediction results. Conclusion The focus of the submitted contribution is the analysis and prediction of the financial health of companies using known prediction models to predict the bankruptcy of companies operating in the automotive industry in Slovakia. By comparing the results of individual prediction models, we can state that the results do not match. As part of further research, we will focus on the creation of a prediction model using mathematical-statistical methods, whose prediction ability will be high and will take into account the conditions in the automotive industry in the territory of the Slovak Republic.

Poďakovanie
APVV-19-0418 Inteligentné riešenia pre zvýšenie inovačnej schopnosti podnikov v procese ich transformácie na inteligentné podniky. APVV-17-0258 Aplikácia prvkov digitálneho inžinierstva pri inovácii a optimalizácii produkčných tokov. VEGA 1/0508/22 Inovatívne a digitálne technológie vo výrobných a logistických procesoch a systémoch. KEGA 020TUKE-4/2023 Systematický rozvoj kompetenčného profilu študentov priemyselného a digitálneho inžinierstva v procese vysokoškolského vzdelávania.

Strany: 44 – 55

Literatúra

  1. Altman, E. I., 1984. The success of business failure prediction models – An international survey. In: Journal of Banking and Finance. s. 171-198.
  2. Fahrmeir, L., T. Kneib, et al., 2017. Regression- Models, Methods and Applications. Springer. ISBN 978-3-642-34332-2.
  3. Fedorko, G.; Vasil, M.; Bartosova, M. (2019) Use of simulation model for measurement of MilkRun system performance, Open Engineering, Vol. 9, No. 1, pp. 600-605, doi: 10.1515/eng-2019-0067, 2019.
  4. Fonti, V., E. Belitser, 2017. Feature selection using LASSO. In: VU Amsterdam Research Paper in Business Analytics, s. 1-25.
  5. Glova, J.; Mrazkova, S.; Dancakova, D. Measurement of intangibles and knowledge: an empirical evidence, AD Alta-Journal of interdisciplinary research 2018, 8, 76-80.
  6. Grunwald, R., J. Holečkova, 2007. Finančni analyza a planovani podniku. 1. vyd., Ekopress. 318 s. ISBN 978-80-86929-26-2
  7. Grznar, P.; Gregor, M.; Gaso, M.; Gabajova, G.; Schickerle, M.; Burganova, N. (2021). Dynamic simulation tool for planning and optimisaton of supply process, In: International Journal of Simulation Modelling, Vol. 20, No. 3, 441-452, doi: 10.2507/IJSIMM20-3-552
  8. Gundová, P., 2015b. Verification of the selected prediction methods in Slovak companies. In: Acta academica karviniensia. [online]. Vol.14(4), s.26-38. [cit.2023-04-20]. Dostupné z: https://aak.slu.cz/pdfs/aak/2014/04/03.pdf.
  9. Hastie, T., R. Tibshirani, J. Friedman, 2009. The elements of statistical learning: Data Mining, Inference and Prediction. 2nd ed. Springer.
  10. Herzog, I.; Grabowska, M. (2021). Quality Cost Account as a Framework of Continuous Improvement at Operational and Strategic Level, Management and Production Engineering Review, Vol. 12, No. 4, 122-132, doi: 10.24425/mper.2021.140000
  11. Hiadlovský, V. a P. Kráľ, 2006. Možnosti predikovania finančnej situácie podnikov v SR s využitím SPSS. In: Forum Statisticum Slovacum. Vol. 2 No. 4.
  12. Horváthová, J., M. Mokrišová, 2019. Efektívnosť podniku verzus jeho bankrot. Prešov: Bookman. 175s.
  13. Horváthová, J., G. Ižaríková, M., Mokrišová a A., Suhányiová, 2015. Applying statistical methods in verification of non-financial indicators as the key measures of business performance. In: Journal of Management and Business: Research and Practice. Roč. 7, č. 2, s. 35-53. - ISSN 1338-0494
  14. Kiseľáková, D., M. Šoltés, 2017. Modely řízení finanční výkonnosti: v teorii a praxi malých a středních podniků. Praha: Grada Publishing. ISBN 978-80-271-0680-6.
  15. Klieštik, T., K. Valášková, J., Klieštiková, M., Kováčová a L., Švábová, 2019. Predikcia finančného zdravia podnikov tranzitívnych ekonomík. Žilina: Žilinská univerzita v Žiline. 622s.
  16. Klieštik, T., K. Kočišová a M. Mišanková, 2015. Logit and Probit Model used for Prediction of Financial Health of Company. In: Procedia Economics and Finance.
  17. Lumnitzer, E.; Fabianova, J.; Janekova, J.; Suhanyiova, A. & Suhanyi, L. The use of simulatins in investment decision-making and financing, In: International Journal of Simulation Modelling, Vol. 23, No. 1, 113-124, https://doi.org/10.2507/IJSIMM23-1-677
  18. Meloun, M. a J. Militký, 2006. Kompendium statistického zpracování dat: metody a řešené úlohy. Praha: Academia.
  19. Ojstersek, R.; Acko, B.; Buchmeister, B. (2020). Simulation study of a flexible manufacturing system regarding sustainability, In: International Journal of Simulation Modelling, Vol. 19, No. 1, 65-76, doi: 10.2507/IJSIMM19-1-502
  20. Straka, M., Sofranko, M., Glova Vegsoova, O., Kovalcik, J. (2022). Simulation of homogeneous production processes, In: International Journal of Simulation Modelling, Vol. 21, No. 2, 214-225, doi: 10.2507/IJSIMM21-2-597
  21. Synek, M., 2011. Manažerska ekonomika. Praha: Grada. ISBN 978-80-247-3494-1.
  22. Zalai, K. a kol., 2001. Finančno-ekonomická analýza podniku, Bratislava: Elita, 446 s
Zväzok: XVI, Číslo: 1/2024

EKONOMICKÉ TRENDY NA GLOBÁLNOM TRHU BIOTECHNOLÓGIÍ

Ing. Matúš Hornáček, Ph.D., EUR ING, Ing.Paed.IGIP
Doc. Ing. Monika Zatrochová, PhD.

TRENDY VO VÝUČBE PREDMETOV NA UNIVERZITÁCH

Ing. Matúš Hornáček, Ph.D., EUR ING, Ing.Paed.IGIP
Doc. Ing. Monika Zatrochová, PhD.

PROCES USKLADNENIA KRVNEJ PLAZMY A OVERENIE JEHO OPTIMALIZÁCIE ZA POMOCI PRVKOV SIMULÁCIE

Ing. Marek Kliment, PhD.
Ing. Jozef Trojan, PhD.
Ing. Marek Mizerák, PhD.
Ing. Ján Kopec

VERIFIKÁCIA VYBRANÝCH MODELOV PREDIKCIE BANKROTU V AUTOMOBILOVOM PRIEMYSLE SLOVENSKEJ REPUBLIKY

Ing. Mgr. Jana Kronová, PhD.
doc. Ing. Miriam Pekarčíková, PhD.
prof. Ing. Peter Trebuňa, PhD.

HUMAN CAPITAL AS A COMPONENT OF THE BUSINESS MODEL: THREATS FROM ARTIFICIAL INTELLIGENCE AND A PRAGMATIC APPROACH IN THE ERA OF MODERN CHALLENGES

M.Sc. Eng. Krzysztof M. Krusiec
M.A. Andrzej Palej

ESG FUNDS AS A TOOL FOR FINANCING MUNICIPALITIES

Ing. Natália Matviaková

SLOVENSKÉ STARTUPY A ICH VÝZVY V SÚČASNOM PODNIKATEĽSKOM PROSTREDÍ

Mgr. Miloš Mrva, Phd.
Bc. Nikola Dohaňošová

NA CESTE ZA VÝNIMOČNOSŤOU: VÝZNAM AGILITY A SAMOHODNOTENIA V EFEKTÍVNEJ PREMENE PODNIKOV

PhDr. Bc. Zora Németh, LL.M.